E. D. STEVENS

After the numerical integration has.been performed,
the number of points along each dimension of the grid
is doubled and the calculation is repeated. The final
result is obtained by extrapolation to da=0.

The program T'DS?2 is included as a subroutine in our
program for applying Lorentz and polarization correc-
tions to intensity measurements. The intensity correc-
tion is given by

Icorr= obs/(l +O€1—0ti+0C2;—0C2') .
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On Some Problems Connected with Thermal Moticn in Melecular Crystals
and a Lattice-Dynamical Interpretation
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Interpretation of thermal motion in molecular crystals is important for obtaining accurate bond lengths.
However, even in a simple case, such as a rigid body, serious difficulties may arise. Contrary to what
seems to be a widespread feeling, mathematical methods for overcoming these difficulties, such as re-
gression on principal components, may often lead to results without physical meaning, and a good fit to
individual B’s is not necessarily a proof of a correct procedure. For an accurate bond-length correction,
a lattice-dynamical treatment is particularly promising as a practical method of solution: examples of
application, which result in a satisfactory interpretation of molecular motion, are given.

Introduction

For some years, it has been good practice for crystallog-
raphers to apply libration cerrections to bond dis-
tances: for these corrections the molecular motion
must be interpreted (Cruickshank, 1956a, b, c, 1961;
Busing & Levy, 1964). More recently, the Schomaker—
Trueblood approach (Schomaker & Trueblood, 1968)
has afforded a complete mathematical method for
solving this problem for rigid molecules, and extended
discussion of this technique is reported (Johnson,
1970b; Pawley, 1970). Among the more noteworthy de-
velopments are Pawley’s proposal of introducing rigid-
body constraints directly into least-squares refinement,
with a considerable reduction of the number of param-
eters to be determined (Pawley, 1964, 1971), and John-
son’s ‘segmented rigid-body’ model (Johnson, 1970a).

In the Schomaker-Trueblood treatment, apart from
indeterminacy of the trace of S, singularity or severe
ill-conditioning of the normal-equation matrix may

often be encountered; for overcoming some of these
difficulties, regression on principal components has
been proposed (Johnson, 1970a, b). We feel that in
some cases correct interpretation of thermal motion
from diffraction data can be particularly difficult, even
for a rigid body, and indiscriminate use of regression
on principal components is far from being satisfactory.
A detailed discussion about the possibility of obtaining
a physically meaningful solution seems to us therefore
to be particularly needed.

Regression on principal components

"This argument is exhaustively treated in some mathe-

matical and crystallographic works (Golub & Kahan,
1965; Massy, 1965; Kendall & Stuart, 1966; Hanson
& Lawson, 1969; Rollett, 1970; Johnson, 19704; Go-
lub & Reinsch, 1970); for our purpose, it is only ne-
cessary to keep a few points in mind.

Because of the orthogonality of the latent vectors
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v, of the A matrix, the solution p of the normal equa-
tions Ap=Db can always be expressed as a linear com-
bination of the v;’s:
P= Z Sivi . 1)
i
Pre-multiplying (1) by A and knowing that Av,=4v,
yields:

AP=ZS,AVi=ZSMiV,=b. (2)

Pre-multiplying (2) by vT and knowing that vIv,=4,;,
we have:
Sil,=v{b
from which:
s;=vTb/4,.

THERMAL MOTION IN MOLECULAR CRYSTALS

Pre-multiplying (1) by vI, we have also:
3)

If the matrix A is singular, one or more latent roots are
zero. If ;=0 and vIb+#0, a finite value for the corre-
sponding s; cannot be obtained and the system is im-
possible to solve; if 4,=0 and vTb=0, the normal equa-
tion system is indetermined and a solution is always
obtained for any value of s;. This can be seen in many
ways, and for instance it is evident from (2), since the
value of b is not affected whatever the value of any s;
corresponding to a latent root of zero.

In regression on principal components, all s;’s corre-
sponding to a zero latent root are set to zero; a similar
procedure is used when the 1;’s are ‘virtually’ zero, in

—vyT
Si=VvVip.

Table 1. Latent roots for normal-equation matrices for treatment of ‘rigid-body’ thermal motion

(a) Benzene at —55°C [data from (Bacon et al., 1964): only C atoms considered]

85%x10-° 1-862 2:355 2-785 4-932 6-000 6-000
7-508 14-88 15-43 17-31 29:22
(b) Diethyl ether 1st molecule (André ez al., 1972)
0-0 1-5x10-¢ 0:580 1-231 1-248 1-976 2-077
2-306 4131 5-000 5-000 5-276 7-247 14-04
17-81 29-41 57-52 59-44 71-92 74-00 74-09
(c) Diethyl ether 2nd molecule (André et al., 1972)
0:0 8-7x10~¢ 0:590 1-199 1-268 1-915 2:146
2-296 4-128 5-000 5-000 5-278 7-246 13-88
17-64 29:06 56-83 5870 69-98 72:04 72-13
(d) Anthracene [data from R. Mason in Lonsdale & Milledge (1961)]
1-728 6-433 6951 11-18 14-00 14-00 21-42
93-82 2234 759-8 1020-0 1282-0

Table 2. Latent vectors (normalized) for ‘nearly zero’ latent roots of normal-equation matrices

Here, the Cartesian reference system has been taken as coincident with the crystallographic axes.

Benzene
(—55°C)

Latent root 8:5x10~% 0-00
Ty, 0-446 0-00
T2 0-052 0-00
Ts3 0-421 0-00
Ty 0-152 0-00
Tn 0:433 0-00
Ty 0-147 0-00
Lu —0-246 0'00
Ly —0-448 0-00
L33 —0-257 0'00
L13 0'224 000
L23 0'073 0’00
Su 0'577
S22 0-577
S33 0-577
Su 0-00
Sis 0-00
S23 000
Sn 0-00
Sgl 0’00
Sa2 0-00

Diethyl ether (Ist)

Diethyl ether (2nd)

15x 1076 000  87x107¢
—0-134 000  —0-131
000 000 000
0-00 000 0-00
0-003 000  —0-005
000 000  —0-002
0-00 0:00 000
000 0-00 000
~0018 000  —0019
0985 0-00 0985
0001 000  —0:002
—0:002 000  —0-009
-0:001 000 0-00
—0001 0577  —0-003
0001 0577 0005
—0-001 0577 —0-002
000 0-00 0-00
0-00 000 0-00
000 000 000
0-00 000  —0-001
~0110 000  —0111
-0:002 0:00 0-004
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order to eliminate several kinds of ill-conditioning
{(Rollett, 1970).

The Schomaker-Trueblood treatment (including S)
always leads to a normal-equation matrix with at least
one latent root equal to zero; the relative latent vector
has all its components equal to zero, except those corre-
sponding to Sj;, S,, and S;3;, where (if normalized)
they are all equal to 1/}/3.* This happens because the
trace of S is indetermined. From (3), and considering
the nature of this latent vector, we see that assigning
s;=0 in this case means choosing the solution corre-
sponding to Tr(S)=0, as suggested by Schomaker &
Trueblood.

Our solution is however somewhat arbitrary, the
values of the diagonal elements of S being essentially
deduced on the basis of an assumption without physi-
cal grounds. Except for particular cases connected with
crystallographic molecular symmetry, there is in fact no
reason why Tr(S) should be zero and this can be seen
when one considers results of lattice-dynamical calcula-
tions (Table 6).

To most erystallographers, the exact knowledge of
S (and T) tensors is not essential because librational
corrections for bond lengths in rigid molecules depend
only on the value of L and for this reason regression on
principal components can be safely applied to many
cases. However, it is important to be sure that no in-
determinacy involves any component of L; otherwise
we have meaningless bond-length corrections. For this
reason, it is essentially to examine all latent vectors
whose A; is zero or nearly so: all these vectors should
have negligible components relative to any L,;.

Some practical cases

A notable example is benzene, one of the first sub-
stances whose bond lengths, as determined by X-ray
diffraction, were corrected for thermal libration (Cox,
Cruickshank & Smith, 1958).

As shown in the original paper, a rigid-body analysis
limited to carbon atoms leads to an indeterminate
result; this happens because the atoms lie on a conic
section (Johnson, 19706). Examination of the latent
roots of the normal-equation matrix (Table 1) and the
latent vector corresponding to the zero A; (Table 2)}
makes it evident that indeterminacy involves L. This
shows the impossibility of obtaining corrections for
thermal libration, unless some additional assumptions
are made. Reasonable assumptions have indeed been
made by Cox, Cruickshank & Smith for their study of
benzene and presumable by Bacon, Curry & Wilson

* This reasoning is strictly valid when no degeneracy
occurs for A=0, i.e. no other latent root is zero, as for most
cases where the Schomaker-Trueblood treatment is actually
useful,

t A ‘complete’ Schomaker-Trueblood treatment involving
S leads to a matrix with two 1,’s close to zero. Here the mol-
ecule is in a centrosymmetric position and, since S=0, this
tensor can be omitted from our treatment, which becomes
identical with that of Cruickshank (1956).

(1964) in a neutron diffraction study of the same sub-
stance.

Application of regression on principal components
leads to the T and L tensors reported in Table 3; here
these tensors are compared with another possible so-
lution, obtained by assigning to s; the value 0-03 in-
stead of zero. In spite of the essential differences be-
tween both sets of T and L tensors, the fit to experi-
mental B’s is practically the same (Table 4); it would
have been identical if A; were exactly equal to zero. If
introduction of hydrogen atoms with their thermal
factors, as derived from neutron diffraction indeed
leads to the ‘true’ solution, this also is completely
different from results obtained from regression on
principal components (Tables 3, 4).§

i The results can be somewhat improved if the contribution
of internal motion is subtracted (Johnson, 1970a; Bacon,
Curry & Wilson, 1964). This contribution is small, being quite
negligible for carbon atoms and of the order of about 10 % for
hydrogen atoms. For this reason, we have omitted it from our
calculations, which were performed in this case merely to show
the large differences between different interpretations.

Table 3. Comparison of various sets of T, L
tensors which fit the experimental B’s for benzene

(see text)
Si= 0
(regression
on p.c.) 5;=0-03 With H atoms
Tu 0-020 0-033 0-027
T2 0-039 0-040 0-040
Tss 0-030 0-043 0-041
Ty, —0-005 —0-007 —0-002
T3 —0-012 0-012 —-0-014
T2 —0:007 —0-003 ~0-007
Ly, 0012 0-005 0-009
L;, 0-022 0-008 0-013
Lss 0-011 0-003 0-012
L, —-0-001 0-001 —0-002
Ly —0-004 0-003 —0-002
Ly —0-002 —0-001 -0-002

Table 4. Comparison between observed B’s for
benzene at —55°C and calculated values corre-
sponding to various sets of T, L tensors as reported
in Table 3 (A’ x 10%)

Experi- With H
Atom mental 5i=0 5=003 atoms
C(1) By, 143 139 139 173
B, 87 89 89 92
Bs; 227 221 221 237
By, -8 3 3 14
By - 15 - 15 - 15 — 38
By — 18 — 11 — 11 — 16
C(2) By 136 143 143 144
B;; 110 113 113 123
B3 227 218 218 220
By, 11 4 4 16
B 27 32 32 -9
B, - 12 - 19 — 18 - 20
C(3) By 153 150 150 156
B>, 108 104 104 109
Bs3 186 200 200 222
By, - 11 - 15 - 15 - 13
Bi; 15 9 9 - 21
By 6 6 6 3
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A similar case occurs for diethyl ether (André,
Fourme & Zechmeister, 1972). Here regression on
principal components was used in order to eliminate
the difficulties due to a severe ill-conditioning of the
normal-equation matrix. However (Table 2), for each
independent molecule one of the two latent vectors

corresponding to a zero A, involves components of L
(especially Lsy); for this reason, unless some well
founded assumptions are made, the results as reported
appear very questionable as far as bond length cor-
rections are concerned (apart from the objection that is
difficult to imagine a molecule of this kind to be rigid).

Table 5. Experimental (0bs.) and ‘dynamical’ (cal.) values of anisotropic temperature factors (x 10%)F

The temperature factors are in the form:

T[ =¢exXp [—‘ (Bl 1h2 + Bzzkz + B3312 + ZBlzhk + 2313h1+ 2323]{1)]

ANT =anthracene (Mason, 1964; Lonsdale & Milledge, 1961)

Bll Bzz B33 BIZ Bl3 BZS

obs. cal. obs. cal. obs. cal. obs. cal. obs. cal, obs. cal.
A 271 291 444 482 136 136 6 34 112 111 - 22 1
B 197 254 217 364 116 131 — 10 4 73 90 - 23 - 29
C 150 174 242 270 124 123 -2 2 73 70 -1 =11
D 158 183 241 249 130 134 -5 - 15 77 74 - 31 — 12
E 144 168 241 267 126 129 -1 0 72 74 21 4
F 189 227 332 351 146 157 15 -5 85 104 - 31 33
G 260 271 468 473 144 155 16 27 114 122 61 46
BCP =benzo[clphenanthrene (Hirshfeld, Sandler & Schmidt, 1963)
C() 38 37 34 33 237 269 —4 —1 10 -3 —6 -8
C(2) 46 48 41 41 338 340 -7 2 13 8 - 25 - 27
C(3) 71 66 45 44 262 308 - 11 —4 25 14 - 19 — 28
(o() 71 68 44 43 237 248 - 19 — 11 - 10 - 10 9 -7
C(5) 61 51 53 52 354 307 — 15 - 12 — 80 -— 43 49 31
C(6) 40 3¢S 58 56 382 373 -6 -6 — 41 - 32 58 44
C(D 36 o, 52 31 200 220 -5 -5 -8 —4 25 13
C(8) 52 9 39 38 210 234 - 16 — 10 - 25 - 17 30 15
C(9) 33 34 35 31 238 229 -1 -2 5 2 33 24
C(10) 32 34 47 43 353 311 -2 -1 - 12 -2 46 40
c'(1) 40 41 23 4 317 285 -3 —4 2 1 - 21 - 12
C'(2) 58 57 42 43 399 352 -3 -7 - 34 - 11 — 34 — 33
C'(3) 97 78 44 44 393 323 5 -1 — 34 -2 — 43 - 33
C'4) 77 74 47 41 321 288 14 7 19 27 -~ 19 -8
C'(5) 48 49 48 4) 426 365 13 11 61 44 39 32
C'(6) 36 3¢ 33 55 460 408 11 7 24 23 58 45
c 37 39 32 30 232 234 0 0 5 9 15 12
c'(8) 48 52 36 36 299 270 10 6 29 27 26 15
BIC=bicyclo[2,2,2]octene—2,3-endo-dicarboxylic anhydride (Destro, Filippini, Gramaccioli & Simonetta, 1971)
C(1) 193 186 67 76 61 68 32 28 3 10 3 1
C(2) 183 201 69 88 43 54 -5 20 12 12 - 11 -10
C(3) 162 179 72 83 42 59 -2 19 -7 -3 -4 -2
C4) 181 206 75 74 53 69 21 25 27 31 6 1
C(5) 303 204 64 67 40 51 4 8 6 12 —4 —4
C(6) 051 229 78 82 46 57 - 17 -5 - 15 — 15 6 6
C(N 291 270 59 60 75 90 5 15 18 21 5 2
C(8) 244 232 92 80 69 94 — 26 -6 33 40 12 7
C(9) 201 245 104 131 48 63 - 23 9 10 33 —4 13
C(10» 228 280 87 91 48 66 10 34 -1 -1 12 17
oQ, 256 324 88 116 68 67 - 16 -2 24 17 18 29
0(2) 215 288 165 203 111 101 —6 12 54 78 13 30
0oQ3) 363 407 92 103 110 103 61 80 29 7 31 32
BNZ=benzene at —135°C (Bacon et al., 1964)
C(1) 83 154 49 74 111 174 3 1 - 12 -7 0 -2
C(2) 83 147 56 92 119 171 -3 1 20 20 -3 -5
C(3) 94 153 51 84 128 161 0 — 15 0 5 3 9
H(l) 184 243 69 77 204 268 0 15 20 4 6 1
H(2) 174 222 134 135 243 257 40 27 114 89 31 -9
H(3) 177 227 98 116 221 233 - 11 - 27 55 49 46 39

+ Data for naphthalene, phenanthrene and pyrene have bee

Suffritti, 1973).

n reported elsewhere (Filippini, Gramaccioli, Simonetta &
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Table 5 (cont.)
BUT=1,6:8,13-butane-1,4-diylidene [14] annulene (Gramaccioli, Mugnoli, Pilati, Raimondi & Simonetta, 1972)
Bll BZZ B33 Bu Bl.! B23
obs. cal. obs. cal, obs. cal. obs. cal, obs. cal. obs. cal.

C(1) 30 25 49 52 168 153 0 0 0 0 6 3
C2) 26 22 61 60 157 140 -7 -5 —4 -2 -9 -1
C(@3) 30 24 92 84 231 198 - 17 - 12 -4 2 21 9
C4) 23 20 138 117 253 224 - 12 -8 7 6 9 6
C(5) 22 21 74 67 148 122 0 0 -9 -7 0 -1
C(6) 36 28 86 81 113 107 0 0 - 10 -7 0 -1
DTO=3,4:7,8-dibenzotricyclo[4.2.0.0*°Jocta-3,7-diene (Barnett & Davis, 1970)
C(1) 70 52 93 90 170 146 1 4 -5 3 -3 2
C(2) 67 50 103 108 144 155 2 6 -3 2 6 5
C(3) 79 51 160 158 178 201 10 14 1 4 -3 -3
C(4) 62 50 216 182 207 223 3 2 -1 -6 16 11
C(5) 72 59 158 167 183 207 —4 -9 - 13 - 20 4 -1
C(6) 82 63 139 149 156 168 2 -3 - 10 — 14 - 11 - 16
C(D) 63 54 114 112 152 137 3 0 -1 -1 8 3
C(8) 62 52 124 107 143 126 2 1 3 6 0 6
PAN=1,6:8,13-propane-1,3-diylidene[14]annulene (Gavezzotti, Mugnoli, Raimondi & Simonetta, 1972)
C(1) 38 30 6 5 153 195 0 1 — 13 -4 7 4
C(2) 48 34 9 7 225 253 2 2 — 30 — 23 9 6
C(3) 32 29 10 8 370 369 1 3 — 36 - 27 0 1
C4) 28 22 10 9 388 398 1 2 7 1 1 -1
C(5) 29 23 10 8 297 300 3 1 24 20 7 3
C(6) 30 24 7 6 144 191 1 1 14 13 -2 1
C(7) 33 27 7 6 129 181 0 0 11 6 7 7
C(8) 33 26 6 5 164 191 0 0 — 12 —6 2 1
C(9) 34 28 8 6 257 308 -1 1 - 19 - 22 7 5
C(10) 32 23 8 7 404 438 0 1 - 31 - 21 -5 -5
C(11) 27 21 8 8 444 445 -1 —1 10 10 - 10 - 12
C(12) 29 25 10 8 317 319 -4 -3 17 26 -2 -7
C(13) 30 26 5 5 225 217 -2 -2 12 12 1 -1
C(14) 39 31 8 6 191 177 -2 -2 22 9 4 4
C(15) 34 28 5 5 240 218 3 2 -2 3 -3 —4
C(16) 41 33 5 5 225 249 1 1 -9 -3 -4 - 10
c(17) 32 26 6 4 190 217 -1 -1 -9 -3 -9 -5

Although benzene and diethyl ether are examples of
a singular matrix of the normal equations (apart from
the indeterminacy of S) a certain degree of ill-condi-
tioning seems to occur for many ‘rigid’ molecules. For
instance, the latent roots of the corresponding matrix
for anthracene range from 1-7 to 1282. Although this
is not strictly a measure of ill-conditioning, it has
something in common with other more serious cases,
the smallest latent roots being about two orders of
magnitude below the average (Table 1).

In our opinion, this is the reason why a lattice-
dynamical interpretation (see below) leads to B’s much
closer to observed values (13 %), whereas considerable
differences can be observed between ‘dynamical’ and
‘crystallographic’ T,L tensors (see especially L,; in
Table 6).

This means that a very different interpretation in
terms of T, L can be obtained for only slightly different
values of temperature factors, usually well within their

real accuracy. An obvious consequence is that, .since .

the accuracy of the B’s is generally rather low, for some
molecules application of a rigid-body fit to the observed

AC30A-5

temperature factors results in such a poorly defined L
tensor as to cause significant uncertainties in bond
lengths (Table 7).* This should be taken into account
when accuracies below 0-005 A are claimed.

Lattice-dynamical interpretation

For all these reasons, the problem of a general treat-
ment of a libration correction for bond lengths is of
doubtful validity even for rigid bodies: as we have seen,
the major difficulties occur when molecules are small
or highly symmetric. Moreover, a general treatment of
a non-rigid movement needs data, such as mutual
correlations, which cannot be obtained from X-ray or
neutron diffraction (Busing & Levy, 1964; Johnson,
1970a) and often even a simplified analysis, such as

* Although Table 7 shows a comparison between ‘crystallo-
graphic’ and ‘dynamical’ bond-length corrections for thermal

‘motion, since the discrepancy between the L tensors is practi-

cally within experimental error, the example is meaningful also
for this purpose.
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Table 6. T, L, S tensors: (1) from the Schomaker-Trueblood treatment; (2) from our dynamical calculationst

Cartesian reference system with axes on a*, b, a* xb.

T L S Lat. roots
(A2x 10%) (rad? x 10%) (A rad x 10%) of L (deg?)
ANT
es) 391 27 — 93 23 0 1 10-0
423 — 25 24 0 80
500 18 33
) 444 15 —101 33 0 -5 192
442 - 15 26 —12 106
514 53 69
BCP
) 342 — 36 -2 16 — 2 1 -6 319 174
325 103 53 2 -8 37 13 7-4
363 23 —14 =15 =32 52
03} 366 — 24 9 15 0 -2 2 3 7 12:9
301 80 37 5 -1 26 9 86
376 28 -9 —14 =30 4-8
BIC
) 331 -4 - 32 55 — 8 7 7 —24 -2 32-8
312 -~ 34 71 =25 —-15 — 8 10 172
279 73 18 — 5 0 152
o)) 329 32 —- 19 46 —3 -1 -2 —47 5 29-4
339 —6 64 —19 10 14 -2 174
345 61 33 —18 —10 155
BNZ
) 117 — 62 — 67 57 —-23 — 9 45-4
219 — 29 123 =27 24-4
177 73 13:0
) 322 — 34 — 32 52 -3 -5 306
322 - 15 88 —13 197
305 61 15-7
BUT
) 372 0 0 41 0 0 0 — 4 0 155
323 0 22 0 16 0 0 13-4
201 47 0 0 0 73
@) 319 0 0 32 0 0 0 1 0 11-1
341 0 18 0 - 9 0 0 10'5
188 34 0 0 0 59
DTO
) 387 2 - 37 39 —1 22 185
283 16 7 -1 39
312 29 23
@) 284 4 — 20 43 0 18 17-8
263 14 13 ~1 47
283 25 4.1
PAN
) 554 — 14 13 65 — 5 9 —-15 -8 20 22:3
314 6 51 5 5 14 —10 168
276 24 -32 -7 2 69
03 436 -3 27 58 0 9 —-13 -8 6 19-8
250 — 10 43 5 2 5 —7 14-4
350 25 —29 4 — 8 71

1 Data for naphthalene, phenanthrene and pyrene have been reported elsewhere (Filippini, Gramaccioli, Simonetta &
Suffritti, 1973).
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Johnson’s ‘segmented rigid-body’ is difficult to apply
in practice.}

An application of lattice dynamics to these crystallo-
graphic problems seems promising, especially in view
of some results already obtained (Cochran & Pawley,
1964; Pawley, 1967, 1972; Cerrini & Pawley, 1973;
Filippini, Gramaccioli, Simonetta & Suffritti, 1973;
Gramaccioli, Simonetta & Suffritti, 1973; Scheringer,
1973). Lattice dynamics provides a way of checking
consistency of thermal-motion interpretation with other
kinds of experimental evidence, such as Raman or infra-
red spectra, a point which cannot be treated if only a fit
of B’sis available. For this reason, we started a series of
calculations mainly on structures of ‘rigid’ hydrocar-
bons, for which accurate data are known. This kind of
substance was chosen as the first to be tested, because
reasonable functions for packing energy are available
and only computer programs of moderate complexity
are necessary. '

In most cases, a fair to excellent agreement between
observed and calculated B’s was found (Table 5), con-
firming the validity of this lattice-dynamical procedure.
The agreement between ‘dynamical’ and ‘crystallo-
graphic’ T,L,S tensors is apparently less good and is
shown in Table 6; the reason why this happens has al-
ready been given for anthracene (see above) and is more
or less the same for the other substances, where the
situation is, however, not so critical. Because of these
differences, bond-length corrections are not exactly the
same for the crystallographic and dynamical interpre-
tations, in some cases (as for anthracene) involving vari-

1 In Johnson’s (1970a) procedure, it is not clear how he
modifies the model to eliminate the dependent linear combina-
tions of variables: it seems that regression on principal com-
ponents is applied for this purpose (see especially p. 157).
However, since this method alone may not afford a physically
valid solution in all cases, it is not easy to make the necessary
assumptions for each substance

ations up to 0-004 A (see Table 7 for some examples).

At least for some substances, such as anthracene or
even benzene at low temperature,{ we think that the
dynamical results may actually be the more reliable, in
spite of the approximations involved in their deriva-
tion, because of the satisfactory (often excellent) agree-
ment with spectroscopic data and experimental disper-
sion curves (Taddei, Bonadeo, Marzocchi & Califano,
1973; Filippini, Gramaccioli, Simonetta & Suffritti,
1973; Lutz & Halg, 1970).

The procedure adopted in our calculationsis similarto
Pawley’sroutine (Pawley, 1967,1968, 1972). The essential
difference consists in sampling the Brillouin zone, a
point which is particularly important for obtaining
physically significant values of the tensor T (Gramac-
cioli, Simonetta & Suffritti, 1973). In these calculations,
various empirical functions have been considered, in
most cases with essentially similar results; the best
agreement with experimental data has been obtained by
use of some functions proposed by Williams (1967) and
the results here reported refer only to these functions,
which are used without modifications for all substances
here treated.

The calculations, although complicated, can be re-
duced to a matter of routine, if appropriate computer
programs are available: a more detailed description of
our programs is given elsewhere (Filippini, Gramac-
cioli, Simonetta & Suffritti, 1973). The only input con-

1 Temperature factors for benzene at low temperature are
not so accurate as for the other structures here considered,
because an incomplete set of data has been used and, more-
over, scale factors between the various layers have apparently
been adjusted during some cycles of the refinement (Bacon et
al., 1964). This might be a reason for the rather poor agree-
ment between experimental and calculated B’s even at low
temperature, while the agreement with experimental vibration
frequencies is good (Taddei, Bonadeo, Marzocchi & Califano,
1973): in this work, benzene has been considered mainly to
show a critical case in evaluating T and L.

Table 7. Bond lengths corrected for rigid-body motion: (1) from the Schomaker—Trueblood treatment,
(2) from our dynamical calculations

ANT

O] )
A-B 1-:376 1-377
B-C 1-447 1-448
C-D 1-412 1413
C-E’ 1-426 1-430
D-E 1-403 1-404
E-F 1-442 1-443
F-G 1-362 1-364
A-G’ 1-414 1-417
BUT

0)) )
C(1H)—C(2) 1-428 1-427
C(1)—C(15) 1-511 1-510
C(1)—C(14) 1-402 1-401
C(2)—C(3) 1-368 1366
C(4)—C(3) 1-424 1-423
C(15)—C(16) 1-523 1-522
C(16)-C(17) 1-525 1-523

A C30A - 5*

PAN
1) (2)
C(1)—CQ) 1416 1-415
C(1)—C(14) 1396 1-396
C(1)—C(15) 1-509 1-507
C(2)—C(3) 1-389 1-389
C(3)—C(4) 1-416 1-415
C(4)—C(5) 1-383 1-383
C(5)—C(6) 1-417 1-416
C(6)—C(7) 1-386 1-385
C(6)—C(15) 1-514 1513
C(7)—C(8) 1393 1-393
C(8)—C(9) 1-413 1-412
C(8)—C(17) 1-530 1-529
C(9)—C(10) 1-396 1-395
C(10)—C(11) 1412 1-411
C(11)-C(12) 1-381 1-380
C(12)-C(13) 1-407 1-407
C(13)-C(14) 1-405 1-404
C(13)-C(17) 1516 1-515
C(15)-C(16) 1-520 1-519
C(16)-C(17) 1-515 1-515
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sists of cell parameters, experimental atomic coordi-
nates, space-group symmetry operations, maximum
packing distance (here 5-50 A) and empirical packing-
energy functions. Computing time is of the order of
20 min on a medium-fast computer such as UNIVAC
1106.

Limits and further developments

In order to extend the lattice-dynamical treatment to
other organic molecules, a prime need is reliable em-
pirical functions for non-bonded energy. At present,
‘good’ functions are known mainly for hydrocarbons,
and application to nitrogen or oxygen-containing mol-
ecules is still rather awkward; however BIC is reported
in Table 6 and the agreement with experimental B’s
is good. In this case, interaction energy involving oxy-
gen has been evaluated with a formula proposed by
Kitaigorodskii (1961), where the van der Waals radii
for oxygen, carbon and hydrogen were assumed to be
1:5, 1-7 and 1-5 A respectively.

Some difficulties also arise when molecular move-
ments are too large and become clearly incompatible
with a harmonic treatment. A case of this kind is par-
ticularly evident in Table 8, where the agreement be-
tween observed and calculated temperature factors for
benzene is reported as a function of temperature. For
this molecule, the root-mean-square amplitudes of
molecular motions can be very large (up to 8° and
0-23 A) and this definitely compromises our results
when the temperature is higher than about —135°C.

Table 8. Agreement between observed and
‘dynamical’ B’s for benzene as a function of

temperature
The experimental r.m.s. amplitudes of thermal motion are also
reported.
R.m.s. amplitudes
(only C atoms)
Transla- Rota-
R* ABY tional tional
-3°C 0-77 -072 023 A 7:9°
—55°C 0-48 —-0-39 0:19 4-9
—135°C 0-34 —0-22 0-15 2-5

¥ R=21Bops— Bayn|/ 2| Bos| -
T 4B= Z(Bobs_ den)/z IBobsl .

Another point to be developed is application to
‘segmented rigid’ molecules and a computer program
for this purpose is at present being written in this lab-
atory. The ‘complete’ dynamical problem of treatmenort
of a non-rigid molecule can also be handled, although
at present the large size of dynamical matrices is a
serious obstacle for a routine application.
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